Systèmes dynamiques discrets
 Automne 2009

S. Mousset
Université Claude Bernard Lyon I - France

Table des matières

(1) Introduction
(2) Modèles discrets dans \mathbb{R}

3 Récapitulatifs - Systèmes dynamiques dans \mathbb{R}

Plan détaillé

(1) Introduction

- Différences systèmes discrets / systèmes continus
- Des systèmes discrets pour approximer les systèmes continus la méthode d'Euler

Modèles continus et modèles discrets

Modèles continus

- Forme $\frac{d n}{d t}=f(n)$
- Équations différentielles ordinaires
- Adaptés aux mesures continues et à l'évolution de phénomènes macroscopiques continus.
- Exemple : espèces à cycle de reproduction non synchronisé et/ou générations chevauchantes (bactéries...).

Modèles discrets

- Forme $n_{t+1}=f\left(n_{t}\right)$
- Suites
- Adaptés aux mesures ponctuelles et à l'évolution de phénomènes discontinus.
- Exemple : espèces à cycle de reproduction synchronisé et ponctuel (plantes annuelles...).

Modèles continus et modèles discrets

Choix d'un type de modèle

Le choix du type de modèle à utiliser devra prendre en compte :

- Le phénomène à modéliser (ex : diffusion à travers une membrane, dynamique d'une population...)
- Des critères biologiques (cycles de vie synchrones ou non)
- Des critères pratiques (dispositif expérimental, type de données récoltées)

Liens entre modèles discrets et modèles continus

$$
\frac{d n}{d t}=f(n) \quad \Longleftrightarrow \quad d f=f(n) d n
$$

$d f$ est la différentielle (petite variation) de f pour une différentielle $d n$ de n donnée.

Plan détaillé

(1) Introduction

- Différences systèmes discrets / systèmes continus
- Des systèmes discrets pour approximer les systèmes continus : la méthode d'Euler

Approximation de la solution d'un système continu : méthode d'Euler

$$
\frac{d n}{d t}=f(n)=\lim _{\delta t \rightarrow 0} \frac{\delta n}{\delta t}
$$

On comptant le temps en unités de δt, on obtient

$$
\frac{\delta n}{\delta t} \approx f(n) \quad n_{t+1}-n_{t} \approx f(n) \delta t
$$

Approximation de la solution d'un système continu : méthode d'Euler

La méthode d'Euler consiste à approximer la solution d'une équation différentielle par une suite, en utilisant un pas de temps δt suffisament petit.

$$
n_{t+1}=n_{t}+f(n) \delta t
$$

Introduction

Des systèmes discrets pour approximer les systèmes continus : la méthode d'Euler

Application au modèle exponentiel

Modèle continu

$$
\begin{gathered}
\frac{d n}{d t}=\lambda n \\
n(t)=n_{0} e^{\lambda t}
\end{gathered}
$$

Approximation discrète

$$
n_{t+1}=n_{t}+\delta t \lambda n_{t}
$$

Application au modèle exponentiel

Table des matières

(1) Introduction
(2) Modèles discrets dans \mathbb{R}

3 Récapitulatifs - Systèmes dynamiques dans \mathbb{R}

Plan détaillé

(2) Modèles discrets dans \mathbb{R}

- La suite de Fibonacci
- Analyse qualitative des systèmes discrets
- Un exemple non biologique
- Le modèle logistique discret

Un modèle historique : la suite de Fibonacci (1228)

Fibonacci modèlise l'évolution de l'effectif d'une population de lapins avec les hypothèses suivantes:

- Un couple de lapin adultes produit chaque mois un couple de jeunes lapins.
- Un couple de jeunes lapins est adulte après deux mois.
- Les lapins ne meurent jamais.

Un modèle historique : la suite de Fibonacci (1228)

Chaque mois, l'effectif des lapins comprend :

- Les couples de lapins qui étaient présents le mois précédent.
- Les nouveaux-nés qui descendent des couples de lapins adultes. Les lapins adultes sont tous-ceux qui étaient présents deux mois auparavant.

La suite de Fibonacci s'écrit donc :

$$
u_{n}=u_{n-1}+u_{n-2}
$$

Un modèle historique : la suite de Fibonacci (1228)

mois	01	02	03	04	05	06	07	08	09	10	11	12
jeunes	1	0	1	1	2	3	5	8	13	21	44	65
adultes	0	1	1	2	3	5	8	13	21	44	65	99
total	1	1	2	3	5	8	13	21	44	65	99	164

La suite de Fibonacci

La suite de Fibonacci

Taux d'accroissement

$$
\begin{gathered}
R_{n}=\frac{u_{n}}{u_{n-1}} \\
\Longleftrightarrow \quad R_{n}=\frac{u_{n-1}+u_{n-2}}{u_{n-1}} \\
\Longleftrightarrow \quad R_{n}=1+\frac{u_{n-2}}{u_{n-1}} \\
\Longleftrightarrow \quad R_{n}=1+\frac{1}{R_{n-1}}
\end{gathered}
$$

S'il existe une limite φ pour R_{n}, elle vérifie

$$
\varphi=1+\frac{1}{\varphi} \quad \Longleftrightarrow \quad \varphi^{2}-\varphi-1=0
$$

La suite de Fibonacci

Taux d'accroissement

$$
\begin{equation*}
\varphi=1+\frac{1}{\varphi} \quad \Longleftrightarrow \quad \varphi^{2}-\varphi-1=0 \tag{1}
\end{equation*}
$$

L'équation 1 admet deux racines réelles :

$$
\varphi_{1,2}=\frac{1 \pm \sqrt{5}}{2}
$$

II existe une seule racine positive $\varphi=\frac{1+\sqrt{5}}{2}$

Systèmes discrets
Modèles discrets dans \mathbb{R}
La suite de Fibonacci

La suite de Fibonacci

Taux d'accroissement

(2) Modèles discrets dans \mathbb{R}

- La suite de Fibonacci
- Analyse qualitative des systèmes discrets
- Un exemple non biologique
- Le modèle logistique discret

Analyse qualitative des systèmes discrets

Points d'équilibre

Soit un modèle discret du type

$$
u_{n+1}=f\left(u_{n}\right)
$$

Un point d'équilibre U^{\star} de ce système est un point qui vérifie

$$
f\left(U^{\star}\right)=U^{\star}
$$

Comme pour les systèmes continus, l'existence d'un point d'équilibre n'implique pas une convergence vers ce point.

Représentation en toile d'araignée (cobweb)

Application à la suite $R_{(n)}$

Stabilité des points d'équilibre

Soit une suite $u_{n}=f\left(u_{n-1}\right)$ admettant un point d'équilibre U^{\star}. On linéarise f au voisinage d'un point d'équilibre U^{\star}.

$$
f\left(U^{\star}+x\right)=f\left(U^{\star}\right)+\left.x \frac{d f}{d u}\right|_{u=U^{\star}}
$$

Si $\exists \epsilon>0\left|\forall x \in \mathbb{R}^{+}<\epsilon,\left|f\left(U^{\star}+x\right)-U^{\star}\right|<|x|\right.$, alors le point d'équilibre U^{\star} est un point d'équilibre stable.

Stabilité des points d'équilibre

Théorème :

Soit une suite $u_{n}=f\left(u_{n-1}\right)$ admettant un point d'équilibre U^{\star}.

- Si $\left|\frac{d f}{d u}\left(U^{\star}\right)\right|<1$, alors U^{\star} est un point d'équilibre stable.
- Si $\left|\frac{d f}{d u}\left(U^{\star}\right)\right|>1$, alors U^{\star} est un point d'équilibre instable.

Un exemple non biologique

Plan détaillé

(2) Modèles discrets dans \mathbb{R}

- La suite de Fibonacci
- Analyse qualitative des systèmes discrets
- Un exemple non biologique
- Le modèle logistique discret

Un exemple non biologique

Exemple de la suite $u_{n+1}=-\frac{\lambda u_{n}}{1+u_{n}^{2}}(\lambda>0)$

Points d'équilibre

- $f(x)=-\frac{\lambda x}{1+x^{2}}$
- Un seul point d'équilibre $u^{*}=0$
- $f^{\prime}\left(u^{*}\right)=f^{\prime}(0)=-\lambda$

Un exemple non biologique

Exemple de la suite $u_{n+1}=-\frac{\lambda u_{n}}{1+u_{n}^{2}}(\lambda>0)$

Stabilité de $u^{*}=0$
Cas $0<\lambda<1$, avec $u_{0}=0.9 \Rightarrow u^{*}=0$ est stable.

Un exemple non biologique

Exemple de la suite $u_{n+1}=-\frac{\lambda u_{n}}{1+u_{n}^{2}}(\lambda>0)$

Stabilité de $u^{*}=0$
Cas $0<\lambda<1$, avec $u_{0}=0.9 \Rightarrow u^{*}=0$ est stable.

Un exemple non biologique

Exemple de la suite $u_{n+1}=-\frac{\lambda u_{n}}{1+u_{n}^{2}}(\lambda>0)$

Stabilité de $u^{*}=0$
Cas $1<\lambda$, avec $u_{0}=0.05 \Rightarrow u^{*}=0$ est instable.

Exemple de la suite $u_{n+1}=-\frac{\lambda u_{n}}{1+u_{n}^{2}}(\lambda>0)$

Stabilité de $u^{*}=0$
Cas $1<\lambda$, avec $u_{0}=0.05 \Rightarrow u^{*}=0$ est instable.

Plan détaillé

(2) Modèles discrets dans \mathbb{R}

- La suite de Fibonacci
- Analyse qualitative des systèmes discrets
- Un exemple non biologique
- Le modèle logistique discret

Le modèle logistique discret

Le modèle logistique discret

Équations du modèle

$$
n_{t+1}=n_{t}+r n_{t}\left(1-\frac{n_{t}}{K}\right)
$$

Le modèle logistique discret

Le modèle logistique discret

Stabilité des points d'équilibre

$$
n^{\star}=n^{\star}+r n^{\star}\left(1-\frac{n^{\star}}{K}\right)
$$

Il existe deux points d'équilibre :

$$
n^{\star}=0 \quad n^{\star}=K
$$

Le modèle logistique discret

Points d'équilibre

$$
\begin{gathered}
n_{t+1}=n_{t}+r n_{t}\left(1-\frac{n_{t}}{K}\right) \\
\frac{d f}{d n}=1+r-\frac{2 r n}{K}
\end{gathered}
$$

$$
n^{\star}=0
$$

$$
\begin{aligned}
& n^{\star}=K \\
& \frac{d f}{d n}(K)=1-r
\end{aligned}
$$

$$
\frac{d f}{d n}(0)=1+r>1 \text { donc } n^{\star}=0
$$

- Si $r<2$ alors $n^{\star}=K$ est
est un point d'équilibre instable. un point d'équilibre stable.
- Si $r>2$ alors $n^{\star}=K$ est un point d'équilibre instable.

Systèmes discrets
Modèles discrets dans \mathbb{R}

Le modèle logistique discret
 Le modèle logistique discret $r<1$

Le modèle logistique discret

Le modèle logistique discret

$1<r<2$ oscillations amorties

Le modèle logistique discret
 Le modèle logistique discret

$r>2$ cycle limite à deux états

Le modèle logistique discret
 Le modèle logistique discret

$r>2$ cycle limite à quatre états

Le modèle logistique discret
 Le modèle logistique discret

$r>2$ cycle limite à huit états

Le modèle logistique discret

Les cycles limites

Diagramme des cycles attractifs

Le modèle logistique discret

Les cycles limites

Diagramme des cycles attractifs (agrandissement 1)

Le modèle logistique discret

Les cycles limites

Diagramme des cycles attractifs (agrandissement 2)

Le modèle logistique discret

Le modèle logistique discret

$r>2.692$ chaos déterministe

Le modèle logistique discret

Le modèle logistique discret

$r>2.692$ chaos déterministe

Le modèle logistique discret

Le modèle logistique discret

$r>3$ extinction de la population

Table des matières

(1) Introduction

(2) Modèles discrets dans \mathbb{R}
(3) Récapitulatifs - Systèmes dynamiques dans \mathbb{R}

Analyse des systèmes dynamiques

Modèles continus

$$
\frac{d n}{d t}=f(n)
$$

Modèles discrets

$$
n_{t+1}=f\left(n_{t}\right)
$$

- Analyse Quantitative : recherche complète d'une solution

$$
\begin{aligned}
& n(t)=h\left(t, n_{0}\right) \\
& \left.n_{t}=h\left(t, n_{0}\right)\right)
\end{aligned}
$$

- Analyse Qualitative : étude du comportement des solutions. Points d'équilibre
Stabilité des points d'équilibre
Alure des chroniques

Plan détaillé

3 Récapitulatifs - Systèmes dynamiques dans \mathbb{R}

- Points d'équilibre
- Stabilité des Points d'Équilibre

Recherche des points d'équilibre

Les points d'équilibre n^{*} sont des invariants du système.

Modèles continus

$$
\left.\frac{d n}{d t}\right|_{n=n^{*}}=f\left(n^{*}\right)=0
$$

Modèles discrets

$$
n_{t+1}=f\left(n_{t}\right)=n^{*} \Leftrightarrow f\left(n^{*}\right)=n^{*}
$$

(3) Récapitulatifs - Systèmes dynamiques dans \mathbb{R} - Points d'équilibre

- Stabilité des Points d'Équilibre

Stabilité des points d'équilibre

Systèmes continus

Deux méthodes alternatives pour déterminer la stabilité en x^{*}

$$
\dot{x}=f(x)
$$

Signe de f

Linéarisation au voisinage de x^{*}
$\lambda=f^{\prime}\left(x^{*}\right)$

- $\lambda<0 \Rightarrow x^{*}$ stable
- $\lambda>0 \Rightarrow x^{*}$ instable
- $\lambda=0 \Rightarrow x^{*}$ on ne peut pas conclure

Stabilité des points d'équilibre

Systèmes discrets

Linéarisation au point d'équilibre u^{*}.

$$
u_{n+1}=g\left(u_{n}\right) \quad \lambda=g^{\prime}\left(u^{*}\right)
$$

$|\lambda|=\left|g^{\prime}\left(u^{*}\right)\right|<1 \Rightarrow u^{*}$ stable

$$
|\lambda|=\left|g^{\prime}\left(u^{*}\right)\right|>1 \Rightarrow u^{*} \text { instable }
$$

